If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13x-189=0
a = 2; b = 13; c = -189;
Δ = b2-4ac
Δ = 132-4·2·(-189)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-41}{2*2}=\frac{-54}{4} =-13+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+41}{2*2}=\frac{28}{4} =7 $
| 3(2x-3)=2 | | 3x+4=1.5x+14 | | 14x=1.3 | | 2=h-12 | | -10+14-2x=2(-3x-2) | | 15=x/8+5 | | 2(8-6v)=-27 | | 9=9(w-7) | | 12.50-0.40x=14.75+0.25x | | 71=m-20 | | 6x-4=4x=13 | | 6.5+3x=8x | | 3x-28=171 | | 7x-10x+16+2x=-5 | | -3/2(10=2x)-11-2x | | 6x-2=4x=13 | | 10x+9=14x+3 | | M=F/d | | 48/64=x/8 | | x²×+2x-15=0 | | 6x-9=4x=13 | | -1=6s-5= | | 2x+75+155=180 | | 2.6=-2.9t | | 25+1x=4+8x-3 | | M=F/d | | 3n-5=7n+11 | | 15x+16+5x+4=180 | | 8(5c-5)=(32=3c) | | 12x-17=81 | | 3x+6=0x+1 | | 3(d+15)–11=10 |